On the Impossibility of Constructing Efficient Key Encapsulation and Programmable Hash Functions in Prime Order Groups
نویسندگان
چکیده
In this paper, we discuss the (im)possibility of constructing chosen ciphertext secure (CCA secure) key encapsulation mechanisms (KEMs) with low ciphertext overhead. More specifically, we rule out the existence of algebraic black-box reductions from the (bounded) CCA security of a natural class of KEMs to any non-interactive problem. The class of KEMs captures the structure of the currently most efficient KEMs defined in standard prime order groups, but restricts an encapsulation to consist of a single group element and a string. This result suggests that we cannot rely on existing techniques to construct a CCA secure KEM in standard prime order groups with a ciphertext overhead lower than two group elements. Furthermore, we show how the properties of an (algebraic) programmable hash function can be used to construct a simple, efficient and CCA secure KEM based on the hardness of the decisional Diffie-Hellman problem with a ciphertext overhead of just a single group element. Since this KEM construction is covered by the above mentioned impossibility result, this enables us to derive a lower bound on the hash key size of an algebraic programmable hash function, and rule out the existence of algebraic (poly, n)-programmable hash functions in prime order groups for any integer n. The latter result answers an open question posed by Hofheinz and Kiltz (CRYPTO’08) in the case of algebraic programmable hash functions in prime order groups.
منابع مشابه
Continuous Collision Resistance and its Applications
We introduce a new, simple and non-interactive complexity assumption for cryptographic hash functions, which seems very reasonable for standard functions like SHA-3. We describe how this assumption can be leveraged to obtain standard-model constructions that previously seemed to require a programmable random oracle: a generic construction of identity-based key encapsulation (ID-KEM) with full a...
متن کاملCCA-Security for predicate encryption schemes
In this thesis we first take a critical look at established security definitions for predicate encryption with public index (PE) under chosen-plaintext attacks (CPA) and under chosenciphertext attacks (CCA) from the current state of research. In contrast to conventional publickey encryption (PKE), security definitions for PE have to deal with user collusion, which is modeled by an additional ke...
متن کاملA New Ring-Based SPHF and PAKE Protocol On Ideal Lattices
emph{ Smooth Projective Hash Functions } ( SPHFs ) as a specific pattern of zero knowledge proof system are fundamental tools to build many efficient cryptographic schemes and protocols. As an application of SPHFs, emph { Password - Based Authenticated Key Exchange } ( PAKE ) protocol is well-studied area in the last few years. In 2009, Katz and Vaikuntanathan described the first lattice-based ...
متن کاملConstructing CCA-secure predicate encapsulation schemes from CPA-secure schemes and universal one-way hash functions
We present a new transformation of chosen-plaintext secure predicate encryption schemes with public index into chosen-ciphertext secure schemes. Our construction requires only a universal one-way hash function and is selectively secure in the standard model. The transformation is not generic but can be applied to various existing schemes constructed from bilinear groups. Using common structural...
متن کاملNon-adaptive programmability of random oracle
Random Oracles serve as an important heuristic for proving security of many popular and important cryptographic primitives. But, at the same time they are criticized due to the impossibility of practical instantiation. Programmability is one of the most important feature behind the power of Random Oracles. Unfortunately, in the standard hash functions, the feature of programmability is limited....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012